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Abstract—This paper presents SILEA (a System for Inductive
LEArning), an efficient inductive learning algorithm for rule
extraction. SILEA is a covering algorithm which extracts IF-
THEN rules from a collection of examples in a reliable way.
The algorithm eliminates exhaustive feature selection by reducing
the number of attributes(features) to be considered for each
necessary iteration of rule extraction. For every iteration, de-
pending on the number of conditions, it prioritizes numerous
attributes over the others to reduce the large number of attribute
combinations. This prioritization, however, needs to be done
attentively to prevent loss in performance or possibly improve
it. SILEA employs the entropy measure for such purpose. As
the entropy value decreases for an attribute, its predictability
increases. SILEA favors the lower entropy-valued attributes
for rule extraction. Another important factor in preserving or
improving the performance of the algorithm is the rule extraction
and selection procedure. SILEA induces every possible rule for
the given combination and selects the most classifying ones among
them. It also eliminates rules which might become obsolete by
the existence of rules with higher classification performance. In
conjunction of these two features, i.e., entropy based attribute
prioritization and redundant rule elimination, SILEA extracts
rules both accurately and efficiently. The paper describes how
the algorithm functions along with its features and discusses its
performance compared to some of the well-known algorithms in
the field on a number of different data sets.

I. INTRODUCTION

Machine learning techniques have been very helpful in
terms of knowledge extraction from examples in an auto-
matic way [18]. One of the most preferred machine learning
techniques undoubtedly is inductive learning [16]. Inductive
learning is a way of reaching general rules from specific
examples [17]. The reasons for inductive learning algorithms
to be preferred are their simplicity, speed and accuracy [16].
The categories of inductive learning can be listed as divide-
and-conquer methods and covering methods [24]. Decision
tree-based approaches of divide-and-conquer methods are ef-
ficient but not always reliable in terms of the generality of the
rules they generate. Covering-method algorithms provide more
flexibility and generality but they have higher complexity. The
proposed SILEA (a System for Inductive LEArning) aims to
provide both efficiency and generality in the rules it generates.

In this paper, we present a new inductive learning algorithm
called SILEA which generates a set of IF-THEN rules in an
efficient way. It employs a feature selection technique similar
to that of Sequential Forward Selection [27] to decrease the
number of attribute-value pairs that are to be considered. An
attribute-value pair defines the affiliation of an attribute and the

specific value(s) it can take [2]. Sequential Forward Selection
prioritizes certain attributes over the others by an objective
function [3]. Similarly, SILEA makes sure that these biases
are made on attributes with higher metric values than the other
attributes. The metric used for this purpose is the entropy mea-
sure. This approach allows SILEA to avoid consideration of
enormous amount of possible combinations for each iteration.
In addition, the extraction process that SILEA employs elim-
inates unnecessary comparisons needed for rule extraction. It
extracts all possible rules for each considered combination and
selects the most classifying ones among them. It excludes the
rules which might become obsolete due to the existence of
more classifying rules. This approach assures the extraction
of the most general rules for the considered combination of
attributes.

In order to asses SILEA’s complexity and performance, we
compared it with some of the well-known algorithms in the
field. SILEA was able to considerably reduce the number of
attribute combinations, i.e., from O(n3) to O(n2) in the worst
case, and have a smaller run-time complexity. The algorithm
was also able to perform better than the others on averages of
all the analyzed datasets.

The rest of the paper is organized as follows: Section II
describes the related work. Section III explains the proposed
SILEA algorithm. Section IV presents an illustrative problem
to explain how the algorithm works. Section V shows perfor-
mance results of the algorithm compared to similar algorithms.
Section VI concludes the paper.

II. RELATED WORK

There exist many divide-and-conquer and covering type
inductive learning algorithms which induce knowledge from
examples. Inductive learning forms a knowledge base from a
given set of examples where each example contains a number
of attribute values along with a class [1].

ID3 is a divide-and-conquer algorithm introduced by Quin-
lan in 1987 which uses training examples to generate a
decision tree [23]. It selects nodes according to their entropies
in order to construct a tree more efficiently [22]. ID3, however,
lacks in terms of the generality of the trees it generates [5].
Many covering-method algorithms have used this vulnerability
to their advantages by introducing algorithms which focus
more on the generality of the rules they induce.

C4.5 is another well known divide-and-conquer algorithm
proposed by Quinlan in 1993 [25]. This improved algorithm,



unlike ID3, can handle continuous attributes. Another im-
provement was pruning. ID3 is more sensitive to noise in data
and in order to prevent the tree from over-fitting the data, C4.5
prunes the tree by eliminating the sections of the tree which
contribute little to the classification of data [12].

AQ is a covering algorithm introduced in 1969 by Michal-
ski [14]. AQ was initially introduced to solve the boolean
function satisfiability problem. However, it later has been
adapted to solve the covering problem. The algorithm has
been applied to several problems such as the generation of
individuals within an evolutionary computation network. The
algorithm has been improved several times but has not been
used widely mainly due to its high complexity [20].

CN2 is a covering algorithm introduced in 1989 by Peter
Clark and Tim Niblett [6]. CN2 algorithm takes advantage of
ID3’s noisy data handling approach along with the flexibility
of AQ family algorithms. In CN2, rule forming procedure is
terminated by the use of a heuristic function based on an
estimate of the noise observed in the data. As a result, CN2
might generate rules which do not necessarily classify all the
training examples but expected to perform well on new data.

RULES3 is also a covering algorithm introduced in 1995
by Pham and Aksoy. RULES3 is an automatic rule extraction
system which was released as an advancement to its prede-
cessors, RULES1 and RULES2. RULES3, in addition to its
predecessors, introduces two new features: 1) it allows the user
to set precision of rules and 2) it provides more generality to
the rules it generates [17].

RULES3-Plus was released in 1997 by Pham and Di-
mov [22] to overcome the issue of exhaustive searching
procedure that RULES3 employs [17]. RULES3-Plus provides
two advantages over its predecessor, 1) it adopts a more
efficient rule searching procedure and 2) it uses the h-measure
metric for selecting attributes [17], [22].

Several algorithms, based on RULES3 and RULES3-Plus,
have been implemented. These algorithms have introduced
many improvements to the base algorithms. For instance,
RULES4 algorithm has the ability to extract rules incremen-
tally [20]. RULES5 employs a new method to handle contin-
uous attributes and to extract rules [18]. RULES6 also intro-
duces a new method for continuous attribute handling along
with a noise-tolerant rule extraction technique [16]. RULES-F
algorithm, in addition to handling continuous attributes, can
generate accurate and compact fuzzy models which allows it
to handle continuous classes as well [19]. RULES3-EXT is
able to perform attribute re-ordering and fire rules partially if
the extracted rules are not able to classify new examples [13].
RULES-TL uses transfer learning by collecting knowledge
from agents in different domains which helps reduce the search
time [7]. RULES-IT algorithm is the incremental version of
RULES-TL algorithm which also transfers rules from different
domains to improve its performance [8].

In this paper, we propose improvements compared to the
RULES3, the base algorithm over which the later approaches
built on. Hence, such improvements can be incorporated into
our SILEA algorithm as well.

III. PROPOSED ALGORITHM

SILEA is an inductive learning algorithm which aims to
generate rules from a dataset in both an efficient and an
accurate manner. In order to achieve these aims, the algo-
rithm employs two important characteristics, namely, feature
selection and rule extraction.

The feature selection approach that SILEA employs is
similar to the Sequential Forward Selection method. To avoid
consideration of every possible combination of attributes, the
algorithm in each iteration fixes nc−1 number of attributes and
takes the combinations of these pre-selected attributes with the
remaining ones. However, to avoid performance drop, it needs
to select these attributes attentively. Otherwise, it is possible
for the algorithm to miss more optimal attribute combinations
which would help generate more general rules. This is why
SILEA uses the entropy measure to decide which attributes to
select in each iteration of the rule extraction. It favors those
with lower entropy values to assure the selection of more
information-gaining attributes. This helps SILEA to generate
as general rules as possible for a given iteration.

Second approach is regarding the rule extraction system of
the algorithm. After deciding on which attributes to consider
for rule extraction, SILEA extracts all possible rules from a
dataset. For each iteration, SILEA is able to generate all of the
rules for the given number of conditions with a single visit of
every example in the dataset. Each potential rule that SILEA
forms from the selected attributes are considered to be rules
unless it contradicts with other examples. Contradiction occurs
when the formed attribute combination value(s) belong to
more than one class among the examples in the dataset. After
the extraction, the rule selection phase of SILEA eliminates
obsolete rules. Obsolete rules are the ones that can be replaced
by other rules with higher occurrences. After selecting the
rules, it discards the examples that can be classified by these
rules. SILEA stops rule extraction when it is able to classify
all of the examples in the dataset with the selected rules.

SILEA induces rules from a set of examples within a
dataset as presented in Algorithm 1 through Algorithm 4. Each
example in a dataset contains a number of attributes and a
class [1]. A single or a combination of attributes is considered
a condition. The number of attributes within a condition
could vary between one and na (total number of attributes
in an example). After data initialization in Section III-A,
feature selection and rule extraction procedures of SILEA are
explained in Section III-B and Section III-C.

A. Data Initialization

To ease the selection process prior to feature selection
and rule extraction, the SortFeatures function is executed
to sort attributes according to their entropy values from the
lowest to the highest (Alg1-Ln1). SILEA quantizes numerical
attributes by defining and setting ranges for their values (Alg1-
Ln2). For the quantization process, the algorithm executes
QuantizeAttributes function which finds the ranges of each nu-
merical attribute (Alg2-Ln1) by determining the minimum and
maximum values of the attribute (Alg2-Ln2-3) and dividing



Algorithm 1: SILEA rule forming procedure

1 SortFeatures(Examples);
2 QuantizeAttributes(Examples, NoOfRanges);
3 SelectedRules = ∅;
4 nc = 0 ; // default
5 UnclassifiedExamples = Examples;
6 while UnclassifiedExamples != ∅ do
7 nc = nc + 1;
8 Blacklist = ∅;
9 PotentialList = ∅;

10 for each Example ∈ Examples do
11 FormedRules = GenerateFormedRules(Example,

nc);
12 for each Rule ∈ FormedRules do
13 if Rule /∈ Blacklist then
14 if Rule /∈ PotentialList then
15 PotentialList =

PotentialList ∪Rule;
16 Rule.occurrence = 1;

17 else if Rule ∈ PotentialList and
Rule.class = Example.class then

18 Rule.occurrence =
Rule.occurrence+ 1;

19 else if Rule ∈ PotentialList and
Rule.class != Example.class then

20 PotentialList =
PotentialList−Rule;

21 Blacklist = Blacklist ∪Rule;

their difference by the number of quantization levels provided
by the user (Alg2-Ln4). Then, for each example (Alg2-Ln5),
the range that the corresponding attribute value belongs to is
calculated and assigned (Alg2-Ln6-12). Note that, we quantize
values outside the range as min or max. After the quantization
process, the algorithm goes into a loop which is executed until
there are no more unclassified examples left in the dataset
(Alg1-Ln6).

B. Feature Selection Procedure

SILEA tries to extract rules from an example set according
to the unique correspondence of attribute-value pairs and their
associated classes. It starts with the minimum number of
conditions set by the user, and as needed, it keeps incrementing
them until it reaches the maximum, which is equivalent to the
number of attributes na.

An important feature of SILEA for optimizing the per-
formance and accuracy of the classification while increasing
efficiency is to prioritize certain attributes over the others.
It employs a feature selection technique similar to that of
Sequential Forward Selection [27] to immensely decrease the
number of combinations to be dealt with. The criteria for such
selection is decided based on the entropy of the attributes [26].

Algorithm 2: QuantizeAttributes(Examples, NoOfRanges)

1 for each Attributei ∈ Examples do
2 Min = FindMin(Attributei);
3 Max = FindMax(Attributei);
4 Range = (Max−Min)/NoOfRanges;
5 for each Example ∈ Examples do
6 if Example.Attributei <= Min then
7 Example.Attributei = 1;

8 else if Example.Attributei > Max then
9 Example.Attributei = NoOfRanges;

10 else
11 Example.Attributei =

d(Example.Attributei)/Rangee;

Algorithm 3: GenerateFormedRules(Example, nc)

1 FormedRules = FixedAttributes = ∅;
2 for i = 1, i++, while i <= nc − 1 do
3 FixedAttributes =

FixedAttributes ∪ Example.attributei;

4 for i = 1, i++, while i <= na − (nc − 1) do
5 FormedRule = FixedAttributes ∪

Example.attributei ∪ Example.class;
6 FormedRules = FormedRules ∪ FormedRule;

7 return FormedRules;

SILEA selects the attributes according to their entropies from
the smallest to the highest, in other words, from the most
information-gaining to the least. The entropy of ith attribute
Ai, i.e., E(Ai) is

|Si|∑
j=1

|Sij ∈ Ai|
|I|

− |C|∑
k=1

|(Sij ∪ Ck) ∈ I|
|Sij ∈ Ai|

log
|(Sij ∪ Ck) ∈ I|
|Sij ∈ Ai|


where;
I = set of ith attribute value and ith class value pairs from

the dataset,
Si = set of unique values that the ith attribute can take,
C = set of unique classes in the dataset
Rule extraction starts with the minimum number of condi-

tions. It can manually be set to any number ranging from 1
to na. If all the examples in the dataset cannot be classified
by the rules extracted while satisfying the current number
of conditions (Alg1-Ln6), it is incremented by one (Alg1-
Ln7) and the process is repeated until there are no more
unclassified examples left. If the number of conditions reaches
the maximum value, which is equivalent to the number of
attributes, then the remaining unclassified examples are all
considered to be rules individually.

In order to minimize the number of combinations when
the condition number is greater than one, SILEA follows an



approach similar to Sequential Forward Selection (Alg3). This
eliminates consideration of every possible combination be-
cause in each iteration, SILEA fixes an attribute from previous
iteration. It selects (nc − 1) number of attributes with least
entropies where nc=condition number (Alg3-Ln2-4). Then, it
finds all the combinations of these pre-selected attribute(s)
with the remaining attribute(s) by appending the remaining
attributes one by one to the pre-selected ones (Alg3-Ln5-
8). For example, to determine combinations when condition
number is 3, the 2 attributes with least entropy values are
selected and then the remaining attributes are appended one by
one to form the combinations for rule extraction. Therefore,
if the number of attributes within the example set were 5,
the combinations to be considered for rule extraction would
be {(Attr1, Attr2, Attr3); (Attr1, Attr2, Attr4); (Attr1, Attr2,
Attr5)}. For each combination, the algorithm goes through
the rule extraction mechanism employed by SILEA which is
explained in detail in Section III-C.

C. Rule Extraction Procedure

For each selected combination of attributes, SILEA extracts
every possible rule in a simple yet accurate way. The main
idea is that the attribute combinations along with their classes
for each example in the example set are considered to be
potential rules unless a contradiction among examples oc-
cur. Contradiction is when an attribute combination belongs
to different classes in the dataset. Two different sets are
used throughout the extraction process, Blacklist (Alg1-Ln8)
and PotentialList (Alg1-Ln9). The Blacklist contains attribute
combinations which cannot form a rule and the PotentialList
contains attribute combinations with their classes which are
likely to be rules. Potential rules in PotentialList also contain
the number of examples they can classify.

Initially, for each example (Alg1-Ln10), the attribute com-
bination is checked by the algorithm whether or not it exists
in the Blacklist (Alg1-Ln13). If it exists, then the current
combination for the current example is ignored since it cannot
form a rule and the next combination is considered. If the
combination does not exist in the Blacklist, then the algorithm
checks whether the combination exists in the PotentialList
(Alg1-Ln14-22). There are three cases that can occur in this
case. First case is that the combination does not exist in the
PotentialList (Alg1-Ln14). Then, it is added to the Poten-
tialList and its occurrence value is set to 1 (Alg1-Ln15-16).
Second case is that it exists in the PotentialList and the rule
combination has the same class as the one in the PotentialList
(Alg1-Ln17). In this case, the current combination can still
be considered as a potential rule, therefore it is kept in the
PotentialList and its occurrence value is incremented by 1
(Alg1-Ln18). Third case is that it exists in the PotentialList
and the combination has a different class than the one in
the PotentialList (Alg1-Ln19). Then, the combination cannot
form a rule, therefore it is removed from the PotentialList and
placed in the Blacklist so that next time such combinations
can be ignored (Alg1-Ln20-21). After every example is visited

Algorithm 4: Filter(PotentialList, UnclassifiedExamples)

1 for each Rule ∈ PotentialList do
2 RuleClassifies = false;
3 for each Example ∈ UnclassifiedExamples do
4 if Classifies(Rule, Example) then
5 RuleClassifies = true;
6 UnclassifiedExamples =

UnclassifiedExamples− Example;

7 if !Classifies(Rule, Example) then
8 PotentialList = PotentialList−Rule;

TABLE I
ALGORITHM COMPLEXITIES

(na = # of attributes, mPRSET = # of expressions stored in PRSET)
Algorithm Number of combinations Asymptotic growth

SILEA
1

2
na(na + 1) O(n2)

RULES3-Plus na +mPRSET

na−1∑
i=1

na − 1 O(n3)

RULES3
na∑
i=1

na!

(na − i)!i!
O(nn!)

and processed in a single pass, potential rules within the
PotentialList would stand to form rules.

Examples are classified by the extracted rules in descending
order of their occurence values (Alg4). If all the examples
that a rule can classify are also classified by another rule
with a higher occurence value, then the rule with lower
occurence value is discarded since it becomes obsolete (Alg4-
Ln9-11). The algorithm also discards the examples that can
be classified by the selected rules (Alg4-Ln4-7). At the end
of this filtering process, the rules in PotentialList are added to
the SelectedRules list (Alg1-Ln27).

The feature selection complexity of SILEA along with
some other algorithms are provided in Table I. SILEA’s
efficiency, especially in terms of the number of combinations
that are needed to be considered, surpasses the algorithms
it is compared to. In order to visualize the complexity of
feature selection of the algorithms, let’s assume an example set
where na = 15. For this particular example set, the maximum
number of combinations that each algorithm considers are:
32,766 for RULES3, 2,955 for RULES3-Plus and 120 for
SILEA. The number of combinations considered in SILEA
is considerably lower than both RULES3 and its successor
RULES3-Plus algorithms.

IV. ILLUSTRATIVE PROBLEM

The Car Acceleration dataset [28] is used to illustrate the
execution of SILEA algorithm. This particular dataset consists



TABLE II
EXAMPLE SET

Example Fuel Max-Speed Car-Size Acceleration
1 diesel high large good
2 propane high large good
3 petrol high compact excellent
4 petrol high large excellent
5 diesel low medium good
6 petrol low compact good
7 petrol average medium excellent
8 diesel average medium poor

TABLE III
PotentialList - POTENTIAL RULES EXTRACTED FROM THE 1ST EXAMPLE

nc # Rules
1 1 Fuel = diesel→

Acceleration = good
1 1 Max-Speed = high→

Acceleration = good
1 1 Car-Size = large→

Acceleration = good

of examples where the algorithm needs to execute all of its
cases at some time during the extraction. This makes it easier
to demonstrate how the algorithm functions in different cases.
The dataset consists of three attributes and three classes. The
attributes are; Fuel, Max-Speed and Car-Size. A combination
of these attributes corresponds to a certain acceleration per-
formance of the car which could be good, excellent or poor.

The example set is given in Table II where attributes are
sorted according to their entropies. In this example set, Fuel
has the lowest entropy while Car-Size has the highest. Quanti-
zation is not applied since there are no numerical attributes in
the dataset. Minimum number of conditions gets incremented
to 1.

Then, for each example in the dataset, the algorithm goes
through the following steps:

For each example; the FormedRules list is formed and
filled by the GenerateFormedRules function. This list contains
the expressions generated from the example which are to be
checked whether or not they form a rule. For the first example
in the set, the following expressions are formed;

- Fuel = diesel→ Acceleration = good

- Max-Speed = high→ Acceleration = good

- Car-Size = large→ Acceleration = good

Since there are no items in both the Blacklist and the
PotentialList, these combinations are added to the PotentialList
and their occurrences are set to 1 for each one of them as
shown in Table III;

In the second example, the following expressions are
formed;

- Fuel = propane→ Acceleration = good

- Max-Speed = high→ Acceleration = good

- Car-Size = large→ Acceleration = good

TABLE IV
PotentialList - POTENTIAL RULES EXTRACTED FROM THE 1ST AND 2ND

EXAMPLES

nc # Rules
1 2 Max-Speed = high→

Acceleration = good
1 2 Car-Size = large→

Acceleration = good
1 1 Fuel = diesel→

Acceleration = good
1 1 Fuel = propane→

Acceleration = good

TABLE V
Blacklist - ATTRIBUTE NAME(S) WHICH BELONG TO MORE THAN ONE

CLASS

nc Conditions
1 Max-Speed = high

TABLE VI
PotentialList - POTENTIAL RULES EXTRACTED FROM THE 1ST, 2ND AND

3RD EXAMPLES

nc # Rules
1 2 Car-Size = large→

Acceleration = good
1 1 Fuel = diesel→

Acceleration = good
1 1 Fuel = propane→

Acceleration = good
1 1 Fuel = petrol→

Acceleration = excellent
1 1 Car-Size = compact→

Acceleration = excellent

Since there are no items in the Blacklist, and there exist
some combinations in the PotentialList, each one of the
newly generated expressions are compared with those in the
PotentialList. Since there are no potential rules containing the
attributes of the first expression, it is added to the PotentialList
and its occurence is set to 1. The second and the third
expressions do exist in the PotentialList and since they have
the same class, there exists no contradiction. Therefore, the
rules are left in the PotentialList but their occurrence values
are incremented. The list would be as shown in Table IV;

In the third example, the following expressions are formed;
- Fuel = petrol→ Acceleration = excellent
- Max-Speed = high→ Acceleration = excellent
- Car-Size = compact→ Acceleration = excellent
There exist no items in Blacklist, therefore, the expressions

are compared with items in the PotentialList. The first and the
third expressions do not contradict with any of the rules in the
PotentialList, therefore they are added to it. The second one
however exists in the PotentialList with a different class. So the
contradicted rule; Max-Speed = high → Acceleration =
good, is removed from the PotentialList and the attribute of
this rule is added to the Blacklist to be ignored next time it is
observed. The lists are shown in Table V and Table VI;

The same process is applied to every example in the



TABLE VII
PotentialList - POTENTIAL RULES SELECTED FROM ALL THE EXAMPLES

WITH nc = 1 AND FROM THE 1ST EXAMPLE WITH nc = 2

nc # Rules
1 2 Car-Size = low →

Acceleration = good
1 1 Fuel = propane→

Acceleration = good
2 1 Fuel = diesel&Max-Speed = high→

Acceleration = good
2 1 Fuel = diesel&Car-Size = large→

Acceleration = good

example set. After visiting every example in the set, the
PotentialList will contain all the rules with condition number
nc, which is currently set to 1.

After the rule extraction, Filter function removes unneces-
sary rules from the PotentialList. Unnecessary rules are those
that might have become obsolete since the examples they are
able to classify can be classified by other rule(s) with higher
occurrence value(s). Starting from the most classifying rules in
the PotentialList, rules are checked whether they can classify
existing unclassified examples. If the rules can classify at least
one example in the UnclassifiedExamples set, then the exam-
ples that the rules can classify are removed from the set and the
rest of the rules are checked with the remaining unclassified
examples. If the rules cannot classify the unclassified examples
or if there are no more examples in the UnclassifiedExamples
set, then these rules are removed from the PotentialList. After
the execution of the Filter function, the remaining rules in the
PotentialList are added to the SelectedRules list.

Since there are still remaining unclassified examples, the
number of conditions is incremented, the first attribute is fixed
since (nc−1 = 1), and all the combinations with the remaining
attributes are calculated. The following expressions are gen-
erated from the first example by the GenerateFormedRules
function;

- Fuel = diesel&Max-Speed = high→ Acceleration =
good

- Fuel = diesel&Car-Size = large → Acceleration =
good

Since there are no items in both the Blacklist and the
PotentialList, these combinations are added to the PotentialList
and their occurrences are set to 1 as shown in Table VII;

All the other examples are visited one by one going through
the same steps as above. Rules in Table VIII are what are left
in the SelectedRules list at the end of extraction and selection
processes.

Since the rules in the SelectedRules list can classify every
example in the dataset, the algorithm selects all the rules in
the SelectedRules list and terminates.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of SILEA to
some of the well-known algorithms in the inductive learning
field using 5 different datasets. The datasets used for evaluation
are; Balloons [15], Hayes-Roth [11], Hepatitis [10], Iris [9]

TABLE VIII
SelectedList - ALL SELECTED RULES FROM THE DATASET

nc # Rules
1 2 Car-Size = low →

Acceleration = good
1 1 Fuel = propane→

Acceleration = good
2 2 Fuel = petrol&Max-Speed = high→

Acceleration = excellent
2 1 Fuel = diesel&Max-Speed = average→

Acceleration = poor
2 1 Fuel = diesel&Max-Speed = high→

Acceleration = good
2 1 Fuel = petrol&Max-Speed = average→

Acceleration = excellent

TABLE IX
PERFORMANCES FOR THE BALLOONS DATASET

Algorithms Avg. # of rules µ σ
SILEA 3 100% 0

RULES3 3 100% 0
RULES3-Plus 6 100% 0

C4.5 3 90.0% 16.1
CN2 3 100% 0

RIPPER 2 84.4% 21.08
RIDOR 2 71.1% 13.04
PART 3 90.0% 16.1

DecisionTable 4 86.7% 17.21
RandomTree 6 88.9% 18.89

TABLE X
PERFORMANCES FOR THE HAYES-ROTH DATASET

Algorithms Avg. # of rules µ σ
SILEA 24 84.1% 3.92

RULES3 21 72.3% 4.5
RULES3-Plus 46 64.4% 3.68

C4.5 12 80.7% 5.4
CN2 18 70.9% 9.05

RIPPER 6 72.8% 8.05
RIDOR 7 68.0% 12.56
PART 9 78.3% 7.46

DecisionTable 6 55.0% 3.03
RandomTree 50 74.4% 8.81

and Lenses [4]. For each of the datasets, we generated 10
randomly sorted versions of the datasets and recorded their
average performances along with the average number of rules
each algorithm extracted for the given dataset. The dataset was
split as 60% and 40% for training and testing, respectively.

Tables IX, X, XI, XII and XIII present a number of
experiments and their performances. The number of conditions
set for SILEA and RULES algorithms is equal to 1 for all the
datasets and the quantization levels set for the Iris dataset is
3 and for the rest of the datasets is 5. RULES3-Plus requires
an additional parameter to be set, which is called PRSET.
For each dataset, this value was set equal to the number
of attributes of the dataset’s examples in order to assure
the algorithm to generate its best performance results. The
remaining algorithms were run with their default parameter
settings as they are the ones that were suggested to be used.



TABLE XI
PERFORMANCES FOR THE HEPATITIS DATASET

Algorithms Avg. # of rules µ σ
SILEA 23 82.6% 3.47

RULES3 33 73.3% 4.92
RULES3-Plus 41 73.7% 4.63

C4.5 5 78.2% 2.66
CN2 12 79.0% 2.4

RIPPER 3 79.0% 3.65
RIDOR 3 78.5% 4.44
PART 7 79.4% 3.63

DecisionTable 13 76.8% 2.43
RandomTree 48 76.6% 5.65

TABLE XII
PERFORMANCES FOR THE IRIS DATASET

Algorithms Avg. # of rules µ σ
SILEA 5 96.7% 2.36

RULES3 5 86.1% 4.07
RULES3-Plus 19 96.7% 2.36

C4.5 4 93.5% 3.46
CN2 5 94.5% 3.41

RIPPER 4 92.3% 2.85
RIDOR 3 93.7% 3.41
PART 4 93.8% 4.01

DecisionTable 3 94.3% 2.96
RandomTree 12 94.8% 2

TABLE XIII
PERFORMANCES FOR THE LENSES DATASET

Algorithms Avg. # of rules µ σ
SILEA 6 80.0% 13.33

RULES3 6 68.0% 15.49
RULES3-Plus 9 48.0% 14.76

C4.5 3 80.0% 12.47
CN2 4 70.0% 9.43

RIPPER 2 66.0% 5.16
RIDOR 2 60.0% 14.91
PART 3 80.0% 12.47

DecisionTable 2 62.0% 13.17
RandomTree 11 69.0% 18.53

Even though the number of attribute combinations to be
considered are reduced in SILEA to O(n2), it still was able
to perform either as good or better than other algorithms on
averages of all 5 cases as seen in Tables XIV. Considering
average performances for all datasets, SILEA was 8.8% better
than RULES3, 12.1% better than RULES3-Plus, 4.2% better
than C4.5, 5.8% better than CN2, 9.8% better than RIPPER,
14.4% better than RIDOR, 4.4% better than PART, 13.7%
better than DecisionTable and 8.0% better than RandomTree
algorithms. Standard deviations show that the performance
results of SILEA, in most cases, were either close to or more
stable than the others.

Compared to the similar algorithms like the RULES algo-
rithms, SILEA was able to achieve these performance results
by reducing the number of rules in 4 out of 5 datasets. The
difference in terms of the number of rules generated between
SILEA and the other algorithms on average is very small.

TABLE XIV
AVERAGE PERFORMANCES

Algorithms µ
SILEA 88.7%

RULES3 79.9%
RULES3-Plus 76.6%

C4.5 84.5%
CN2 82.9%

RIPPER 78.9%
RIDOR 74.3%
PART 84.3%

DecisionTable 75.0%
RandomTree 80.7%

This shows that SILEA was able to extract as general rules
as possible for each iteration with these datasets. SILEA’s
method of rule selection among the generated rules also work
accurately since its performance results have excelled the other
algorithms with the analyzed datasets.

VI. CONCLUSION AND FUTURE WORK

SILEA is a simple, yet accurate inductive learning algo-
rithm. It tries to minimize the enormous amount of possible
consideration instances, i.e., O(n.n!), to a reasonable amount,
i.e., O(n2), without sacrificing from its accuracy. The expected
performance drop from minimizing the number of combination
of attributes to be considered is recovered by two factors
employed in the algorithm. First one is that the algorithm,
for the given combination, extracts all the rules and selects
those which can classify the most number of examples.
During the selection phase, the algorithm also discards any
rules that might have been set obsolete by other rules with
higher classification capabilities. Second one is that since
the algorithm favors certain attributes over the others when
performing combination reduction, it is made sure that these
biased attributes are those which excel the others based on
their entropy values. SILEA, however, does not guarantee
the most general rules for a given dataset. Even though the
algorithm assures the generation of the most general rules
for the considered combination, it is possible for it to miss
more general rules regarding the overall extraction since it
eliminates certain combinations in each iteration.

SILEA can be improved for different scenarios by incor-
porating other approaches. For instance, the algorithm can
employ a better range calculation technique to handle contin-
uous attributes in a more accurate way. Another improvement
can be made on the rule extraction process by introduction of
tolerance of error in the rules it generates. SILEA also lacks
the ability to update the model it generates from a dataset.
Every time new training data is to be used to train the model,
the entire process is to be repeated along with the previous
data. An incremental version of SILEA could help address
this issue by letting users update their models without the
need to re-generate rules from the data which had already
been processed.
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